Literature about scientific applications utilizing our instruments

ICAD – in situ NOx monitor

The ICAD (iterative cavity-enhanced DOAS) method

Horbanski, M., Pöhler, D., Lampel, J., and Platt, U., Atmos. Meas. Tech., 12, 3365–3381, 2019.

https://doi.org/10.5194/amt-12-3365-2019

SkySpec – passive remote sensing

VDI Guidelines 4212: Remote sensing – Atmospheric measurements using passive DOAS – Gaseous emissions and ambient air measurements

Fachbereich Umweltmesstechnik

https://www.vdi.de/richtlinien/details/vdi-4212-fernmessverfahren-messen-in-der-atmosphaere-nach-dem-passiv-doas-prinzip-messen-von-emissionen-und-immissionen


The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

Lampel, J., Frieß, U., and Platt, U., Atmos. Meas. Tech., 8, 3767–3787, 2015.

https://doi.org/10.5194/amt-8-3767-2015


The tilt effect in DOAS observations

Lampel, J. et al., Atmos. Meas. Tech., 10, 4819–4831, 2017.

https://doi.org/10.5194/amt-10-4819-2017


MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget

Wang, Y. et al., Atmos. Meas. Tech., 10, 3719–3742, 2017.

https://doi.org/10.5194/amt-10-3719-2017


Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives

Beirle, S., Lampel, J., Lerot, C., Sihler, H., and Wagner, T.: , Atmos. Meas. Tech., 10, 581–598, 2017.

https://doi.org/10.5194/amt-10-581-2017


Detection of O4 absorption around 328 and 419 nm in measured atmospheric absorption spectra

Lampel, J., Zielcke, J., Schmitt, S., Pöhler, D., Frieß, U., Platt, U., and Wagner, T., Atmos. Chem. Phys., 18, 1671–1683, 2018.

https://doi.org/10.5194/acp-18-1671-2018


Shipborne MAX-DOAS measurements for validation of TROPOMI NO2 products,

Wang, P., Piters, A., van Geffen, J., Tuinder, O., Stammes, P., and Kinne, S., Atmos. Meas. Tech., 13, 1413–1426, 2020.

https://doi.org/10.5194/amt-13-1413-2020


Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI,

Ryan, R. G., Silver, J. D., Querel, R., Smale, D., Rhodes, S., Tully, M., Jones, N., and Schofield, R., Atmos. Meas. Tech. Discuss., in review, 2020.

https://doi.org/10.5194/amt-2020-232


Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2

Kreher, K. et al., Atmos. Meas. Tech., 13, 2169–2208, 2020.

https://doi.org/10.5194/amt-13-2169-2020


Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign

Wang, Y. et al., Atmos. Meas. Tech., 13, 5087–5116, 2020.

https://doi.org/10.5194/amt-13-5087-2020


Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign

Tirpitz, J.-L., Atmos. Meas. Tech. Discuss., in review, 2020.

https://doi.org/10.5194/amt-2019-456


Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments during the CINDI-2 campaign

Donner, S. et al., Atmos. Meas. Tech., 13, 685–712, 2020.

https://doi.org/10.5194/amt-13-685-2020