Airux A new instrument for in-situ nitrous acid (HONO) measurements by Iterative Cavity enhanced DOAS

Lampel, J.^{1,2}, Schmitt, S.¹, Pöhler, D.^{1,2}, Horbanski, M.^{1,2}, and Platt, U.^{1,2}

1 - Airyx GmbH, Eppelheim, Germany 2 - Institute of Environmental Physics, University of Heidelberg

Motivation

- > NO_x chemistry → HONO
- Investigation of sources, sinks and processes
- Current measurement techniques are complex

Typical HONO concentrations

Urban/rural day:0-1 ppbUrban/rural night:0-2 ppbIndoor:1-2 ppb

Direct spectroscopic detection of HONO and NO₂

Low zero and calibration drift

No HONO/NO₂ calibration gases needed

ICAD Setup and Method

The ICAD HONO instrument:

- \succ Simultaneous and direct spectroscopic measurement of HONO and NO₂
 - > 350nm-390nm
- > Use of reliable and tested ICAD algorithm
- ➢ Fast response time

Airyx

- > No consumables, fully automatic operation
- > No significant zero point drift

Measurement range	HONO 0 - 500 ppb	NO ₂ 0 - 2000 ppb
LOD (at 10s)	0.2 ppb	0.4 ppb
LOD (at 1000s)	20 ppt	40 ppt

¹Horbanski et al.: Atmos. Meas. Tech., 12, 3365-3381, 2019 <u>https://doi.org/10.5194/amt-12-3365-2019</u>

Exemplary data

HONO observations inside Airyx Lab

Exemplary data

Comparison with LOPAP

Intercomparisons of a HONO ICAD prototype with LOPAP measurements in cooperation with the group of Ammann et al at PSI/Switzerland.

Summary

ICAD HONO properties Direct spectroscopic HONO (and NO₂) measurement \bullet \rightarrow no significant interferences High sensitivity, low measurement error High accuracy \bullet No zero-point or calibration drift, 100% reproducibility \bullet Fast response within seconds \bullet Robust setup \bullet High stability (not sensitive to shocks, vibration, temperature) \bullet No consumable gases/liquids required Simple and low-cost \bullet operation No calibration gases (HONO, NO₂) required \bullet Light weight (11kg) \bullet Low power consumption (<40W at 12 V) \bullet Extension towards shorter wavelengths to cover other gases: \bullet Outlook HCHO, Ozone, SO₂

Thank you for your attention!

